Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Slotte, Tanja (Ed.)Abstract Gene body methylation (gbM) is an epigenetic mark where gene exons are methylated in the CG context only, as opposed to CHG and CHH contexts (where H stands for A, C, or T). CG methylation is transmitted transgenerationally in plants, opening the possibility that gbM may be shaped by adaptation. This presupposes, however, that gbM has a function that affects phenotype, which has been a topic of debate in the literature. Here, we review our current knowledge of gbM in plants. We start by presenting the well-elucidated mechanisms of plant gbM establishment and maintenance. We then review more controversial topics: the evolution of gbM and the potential selective pressures that act on it. Finally, we discuss the potential functions of gbM that may affect organismal phenotypes: gene expression stabilization and upregulation, inhibition of aberrant transcription (reverse and internal), prevention of aberrant intron retention, and protection against TE insertions. To bolster the review of these topics, we include novel analyses to assess the effect of gbM on transcripts. Overall, a growing body of literature finds that gbM correlates with levels and patterns of gene expression. It is not clear, however, if this is a causal relationship. Altogether, functional work suggests that the effects of gbM, if any, must be relatively small, but there is nonetheless evidence that it is shaped by natural selection. We conclude by discussing the potential adaptive character of gbM and its implications for an updated view of the mechanisms of adaptation in plants.more » « less
-
Wright, S (Ed.)Abstract In plants, mammals and insects, some genes are methylated in the CG dinucleotide context, a phenomenon called gene body methylation (gbM). It has been controversial whether this phenomenon has any functional role. Here, we took advantage of the availability of 876 leaf methylomes in Arabidopsis thaliana to characterize the population frequency of methylation at the gene level and to estimate the site-frequency spectrum of allelic states. Using a population genetics model specifically designed for epigenetic data, we found that genes with ancestral gbM are under significant selection to remain methylated. Conversely, ancestrally unmethylated genes were under selection to remain unmethylated. Repeating the analyses at the level of individual cytosines confirmed these results. Estimated selection coefficients were small, on the order of 4 Nes = 1.4, which is similar to the magnitude of selection acting on codon usage. We also estimated that A. thaliana is losing gbM threefold more rapidly than gaining it, which could be due to a recent reduction in the efficacy of selection after a switch to selfing. Finally, we investigated the potential function of gbM through its link with gene expression. Across genes with polymorphic methylation states, the expression of gene body methylated alleles was consistently and significantly higher than unmethylated alleles. Although it is difficult to disentangle genetic from epigenetic effects, our work suggests that gbM has a small but measurable effect on fitness, perhaps due to its association to a phenotype-like gene expression.more » « less
-
Abstract It remains a major challenge to identify the genes and mutations that lead to plant sexual differentiation. Here, we study the structure and evolution of the sex-determining region (SDR) inVitisspecies. We report an improved, chromosome-scale Cabernet Sauvignon genome sequence and the phased assembly of nine wild and cultivated grape genomes. By resolving twentyVitisSDR haplotypes, we compare male, female, and hermaphrodite haplotype structures and identify sex-linked regions. Coupled with gene expression data, we identify a candidate male-sterility mutation in theVviINP1gene and potential female-sterility function associated with the transcription factorVviYABBY3. Our data suggest that dioecy has been lost during domestication through a rare recombination event between male and female haplotypes. This work significantly advances the understanding of the genetic basis of sex determination inVitisand provides the information necessary to rapidly identify sex types in grape breeding programs.more » « less
An official website of the United States government
